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Abstract. We demonstrate that all the known single- and double-logarithm summations for a parton
distribution function can be unified in the Collins–Soper resummation technique by applying soft
approximations appropriate in different kinematic regions to real gluon emissions. Neglecting the
gluon longitudinal momentum, we obtain the kT (double-logarithm) resummation for two-scale QCD
processes, and the Balitsky–Fadin–Kuraev–Lipatov (single-logarithm) equation for one-scale processes.
Neglecting the transverse momentum, we obtain the threshold (double-logarithm) resummation for
two-scale processes, and the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (single-logarithm) equation for
one-scale processes. If we keep the longitudinal and transverse momenta simultaneously, we derive a
unified resummation for a large Bjorken variable x, and a unified evolution equation appropriate for both
intermediate and small x.

1 Introduction

It is known that radiative corrections in perturbative QCD
(PQCD) produce large logarithms at each order of the
coupling constant. Double logarithms appear in processes
involving two scales, such as ln2(p+b) with p+ the large
longitudinal momentum of a parton and 1/b the small in-
verse impact parameter, where b is conjugate to the parton
transverse momentum kT. In the kinematic end-point re-
gion with large Bjorken variable x, one has ln2(1/N) from
the Mellin transformation of ln(1−x)/(1−x)+, for which
the two scales are the large p+ and the small infrared cutoff
(1 − x)p+ for gluon emissions from a parton. Single loga-
rithms are generated in processes involving only one scale,
such as ln p+ and ln(1/x), for which the relevant scales are
the large p+ and the small xp+, respectively. These loga-
rithmic corrections to a parton distribution function have
been summed to all orders by various methods: the kT re-
summation for ln2(p+b) [1], the threshold resummation for
ln2(1/N) [2–4], the Dokshitzer–Gribov–Lipatov–Altarelli–
Parisi (DGLAP) equation for ln p+ [5], and the Balitsky–
Fadin–Kuraev–Lipatov (BFKL) equation for ln(1/x) [6].

In this paper we shall demonstrate that all the above
single- and double-logarithm summations can be derived
in the Collins–Soper (CS) resummation technique [1]. The
main feature is the soft approximation for real gluon emis-
sions, with which a parton distribution function φ(x +
l+/p+, |kT + lT|) is associated. The arguments of φ in-
dicate that the parton, emerging from a hadron, carries
the longitudinal momentum xp+ + l+ and the transverse
momentum kT + lT in order to radiate a real gluon with
momentum l. If we neglect the l+ dependence,

φ(x + l+/p+, |kT + lT|) ≈ φ(x, |kT + lT|), (1)

the scale (1 − x)p+ will not appear. Hence, (1) is inap-
propriate for the region with large x → 1. In this soft
approximation, we derive the kT resummation for inter-
mediate x, which involves two scales: the large xp+ and
the small kT, and the BFKL equation for small x, which
involves only one scale xp+ ≈ kT. If we neglect the lT
dependence,

φ(x + l+/p+, |kT + lT|) ≈ φ(x + l+/p+, kT), (2)

the transverse degrees of freedom of a parton can be inte-
grated out, and kT will not be a relevant scale. Therefore,
(2) is inappropriate for small x, where the scale kT is of
order xp+, and not negligible. In this soft approximation,
we derive the threshold resummation for large x, which
involves two scales: the large xp+ and the small (1−x)p+,
and the DGLAP equation for intermediate x, which in-
volves only one scale, xp+ ∼ (1 − x)p+.

In the regions where (1) and (2) are inappropriate, we
should keep both the l+ and lT dependences, and employ
φ(x + l+/p+, |kT + lT|) for real gluon emissions directly.
In this case the three scales xp+, (1 − x)p+ and kT ex-
ist simultaneously. We shall derive a unified resummation
(a unification of the kT and threshold resummations) for
large x, and a unified evolution equation (a unification of
the DGLAP and BFKL equations), which is suitable for
both intermediate and small x. In conclusion, we are able
to reproduce all the logarithmic summations and derive
their unifications simply by employing appropriate soft
approximations for real gluon emissions in the CS tech-
nique. The results are summarized in Table 1.
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Table 1. Logarithmic summations derived from the Collins–Soper technique under
different soft approximations at different Bjorken variables x

Small x Intermediate x Large x

Neglect l+ BFKL equation kT resummation
Neglect lT DGLAP equation threshold resummation
No neglect unified equation unified resummation

2 Master equation

Consider a parton distribution function φ(x, kT, p+) for a
hadron with the light-like momentum pµ = p+δµ+, which
describes the probability that a parton carries the lon-
gitudinal momentum xp+ and the transverse momentum
kT. If the parton is a quark, φ is written, in the minimal
subtraction scheme, as

φ(x, kT, p+) =
∫

dy−

2π

∫
d2yT

4π2 e−ixp+y−+ikT·yT

×〈p|q̄(y−,yT)
1
2
γ+q(0)|p〉, (3)

where γ+ is a Dirac matrix, and |p〉 denotes the hadron.
Averages over spin and color are understood. If the parton
is a gluon, the operator in the hadronic matrix element is
replaced by F+

µ (y−,yT)Fµ+(0). The above definition is
given in the axial gauge n · A = 0 with the gauge vec-
tor nµ = δµ− lying on the light cone. To implement the
CS technique, we allow n to vary arbitrarily away from
the light cone (n2 6= 0) [1], and the parton distribution
function becomes gauge dependent. However, it will be
observed that the kernels for various logarithmic summa-
tions turn out to be n-independent. This is natural, since
it has been shown that parton distribution functions de-
fined for different n possess the same infrared structure,
and thus the same evolution behavior, though they have a
different ultraviolet structure [7]. After the derivation, we
bring n back to the light cone, and the gauge invariance of
the parton distribution function is restored. That is, the
arbitrary vector n appears only at the intermediate stage
of the derivation, and acts as an auxiliary tool.

The master equation in the CS technique is a differ-
ential equation of φ in p+ [1,8]. Because of the scale in-
variance of φ in n as indicated by the gluon propagator,
−iNµν(l)/l2, with

Nµν = gµν − nµlν + nν lµ

n · l
+ n2 lµlν

(n · l)2
, (4)

φ depends on p+ via the ratio (p · n)2/n2. Hence, we have
the chain rule relating the derivative dφ/dp+ to dφ/dnα,

p+ d
dp+ φ = − n2

v · n
vα

d
dnα

φ, (5)

with v a dimensionless vector along p. The operator d/dnα

applies to gluon propagators, leading to

d
dnα

Nµν = − 1
n · l

(lµNαν + lνNµα). (6)

�

p+
d

dp+
= 2
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+
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Fig. 1. a The derivative p+dφ/dp+ in the axial gauge. b The
soft structure and c the ultraviolet structure of the O(αs) sub-
diagram containing the special vertex

The loop momentum lµ (lν) contracts with the vertex the
differentiated gluon attachments, which is then replaced
by a special vertex,

v̂α =
n2vα

v · nn · l
. (7)

This special vertex can be read off from the combination
of (5) and (6).

Employing Ward identities [9], a diagram with the con-
traction of lµ can be expressed as the difference of a di-
agram in which the particle (quark or gluon) propagator
after the contraction is removed, and a diagram in which
the particle propagator before the contraction is removed.
Hence, pair cancellation exists between the diagrams with
adjacent contractions of lµ. The summation of all the dia-
grams with different differentiated gluons then reduces to
a single new diagram, where the external particle propa-
gator lying farthest away is removed. That is, the special
vertex appears at the outer end of the parton line in this
new diagram. We obtain the master equation [1,8],

p+ d
dp+ φ(x, kT, p+) = 2φ̄(x, kT, p+), (8)

shown in Fig. 1a, where the new diagram, denoted by φ̄,
contains the special vertex represented by a square. The
coefficient 2 comes from the equality of φ̄ with the special
vertex on either of the two parton lines.
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The collinear region of the loop momentum l is not
important because of the factor 1/(n · l) in v̂α with non-
vanishing n2. Therefore, the important regions of l are
the soft and hard ones, in which the subdiagram contain-
ing the special vertex can be factorized by φ̄ according to
Figs. 1b and c at lowest order, respectively. The second
subdiagram in Fig. 1c, as a soft subtraction, guarantees
a hard momentum flow. The remaining part is the origi-
nal distribution function φ. Therefore, φ̄ is factorized into
the convolution of the subdiagram containing the special
vertex with φ.

The soft contribution from Fig. 1b is written as

φ̄s(x, kT, p+) = φ̄sv(x, kT, p+) + φ̄sr(x, kT, p+), (9)

with

φ̄sv =
[
ig2CF µε

∫
d4−εl

(2π)4−ε
Nνβ(l)

v̂βvν

v · ll2
− δK

]
×φ(x, kT, p+), (10)

φ̄sr = ig2CF µε

∫
d4−εl

(2π)4−ε
Nνβ(l)

v̂βvν

v · l
2πiδ(l2)

×φ(x + l+/p+, |kT + lT|, p+), (11)

corresponding to the virtual and real gluon emissions, re-
spectively. The color factor CF = 4/3 should be replaced
by Nc = 3 in the case that the parton is a gluon. The addi-
tive counterterm δK is specified in the modified minimal
subtraction scheme. The hard contribution from Fig. 1c is
given by

φ̄h(x, kT, p+) = G(xp+/µ, αs(µ))φ(x, kT, p+), (12)

with the hard function

G = −ig2CF µε

∫
d4−εl

(2π)4−ε
Nνβ(l)

v̂β

l2

×
[

x 6 p− 6 l
(xp − l)2

γν +
vν

v · l

]
− δG

= −αs(µ)
π

CF ln
xp+ν

µ
, (13)

where δG is an additive counterterm. In the case that the
parton is a gluon, the expression of G can be written down
straightforwardly. The gauge factor ν = ((v · n)2/|n2|)1/2

confirms our argument that φ depends on p+ via the ratio
(p · n)2/n2.

3 kT resummation and BFKL equation

We first discuss the soft approximation in (1) for φ asso-
ciated with the real gluon emission. Fourier transforming
(11) into the impact parameter b space in order to decou-
ple the lT integration, we derive

φ̄s(x, b, p+) = K(1/(bµ), αs(µ))φ(x, b, p+), (14)

with the soft function

K = ig2CF µε

∫
d4−εl

(2π)4−ε
Nνβ(l)

v̂βvν

v · l

×
[

1
l2

+ 2πiδ(l2)eilT·b
]

− δK

=
αs(µ)

π
CF ln

1
bµ

. (15)

Hence, in the intermediate x region φ involves two scales:
the large xp+ that characterizes the hard function G in
(13) and the small 1/b that characterizes the soft function
K.

Using φ̄ = φ̄s + φ̄h, the master equation (8) becomes

p+ d
dp+ φ(x, b, p+) (16)

= 2
[
K(1/(bµ), αs(µ)) + G(xp+/µ, αs(µ))

]
φ(x, b, p+).

Since both the ultraviolet divergences in K and G come
from the virtual gluon contribution φ̄sv, they cancel each
other such that K + G is renormalization-group (RG) in-
variant. The single logarithms ln(bµ) and ln(xp+/µ), con-
tained in K and G, respectively, are organized by the RG
equations

µ
d
dµ

K = −γK = −µ
d
dµ

G. (17)

The anomalous dimension of K, λK = µdδK/dµ, is given,
up to two loops, by [10]

γK =
αs

π
CF +

(αs

π

)2
CF

[
CA

(
67
36

− π2

12

)
− 5

18
nf

]
,

(18)
with nf the number of quark flavors and CA = 3 a color
factor. The solution of (17) gives

K(1/(bµ), αs(µ)) + G(xp+/µ, αs(µ))

= −
∫ xp+

1/b

dµ

µ
γK(αs(µ)), (19)

where the initial conditions K(1, αs(1/b)) and G(1,
αs(xp+)) that contribute only to the single-logarithm sum-
mation have been dropped. Solving the differential equa-
tion (16) with the above expression inserted, we obtain
the kT resummation [8],

φ(x, b, p+) = ∆k(b, xp+)φ(0)(x), (20)

with the (Sudakov) exponential

∆k(b, xp+) = exp

[
−2
∫ xp+

1/b

dp

p

∫ p

1/b

dµ

µ
γK(αs(µ))

]
.

(21)
In the small x region with xp+ ∼ kT, or xp+ ∼ 1/b in the
b space, the above two-scale case reduces to the one-scale
case. The source of double logarithms, i.e., the integral
containing γK in (19), is less important. Instead of ap-
plying the RG equation (17), we simply add (10)–(12), or
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equivalently, Figs. 1b and c. The result can be understood
in the way that the function G introduces an ultraviolet
cutoff of order xp+ ∼ kT, which comes from the first sub-
diagram of Fig. 1c, to the virtual soft gluon contribution.
Without Fourier transformation, φ̄ can be re-expressed,
according to (10) and (11), as

φ̄(x, kT, p+)

= ig2Nc

∫
d4l

(2π)4
Nνβ(l)

v̂βvν

v · l
(22)

×
[
θ(k2

T − l2T)
l2

φ(x, kT, p+) + 2πiδ(l2)φ(x, |kT + lT|, p+)
]
,

where the color factor has been replaced by Nc, because
we consider the gluon distribution function in the small x
region. The θ function, defining the ultraviolet cutoff kT,
is the consequence of the inclusion of G.

To make a variation in x via a variation in p+, we as-
sume a fixed parton momentum. This assumption is rea-
sonable, since we are considering the one-scale case with
xp+ ∼ kT. The momentum fraction x is then proportional
to 1/p+, and we have [9]

p+ d
dp+ φ(x, kT, p+) = −x

d
dx

φ(x, kT, p+). (23)

Performing the integrations over l+ and l− in (22) and
using (23), the master equation (8) reduces to the BFKL
equation [11],

dφ(x, kT, p+)
d ln(1/x)

= ᾱs

∫
d2lT
πl2T

[
φ(x, |kT + lT|, p+)

−θ(k2
T − l2T)φ(x, kT, p+)

]
, (24)

with the coupling constant ᾱs = Ncαs/π.

4 Threshold resummation
and DGLAP equation

We next consider the soft approximation in (2). In this
case the dependence on kT can be integrated out from
both sides of (10)–(12), and the scale (1 − x)p+ enters.
We employ the Mellin transformation to bring φ̄sr from
the momentum fraction x space to the moment N space,

φ̄sr(N, p+) =
∫ 1

0
dxxN−1φ̄sr(x, p+), (25)

under which the l+ integration decouples. Combined with
the soft virtual contribution in (10), we derive

φ̄s(N, p+) = K(p+/(Nµ), αs(µ))φ(N, p+), (26)

with the soft function

K = ig2CF µε

∫ 1

0
dz

∫
d4−εl

(2π)4−ε
Nνβ(l)

v̂βvν

v · l

[
δ(1 − z)

l2

+2πiδ(l2)δ
(

1 − z − l+

p+

)
zN−1

]
− δK,

=
αs(µ)

π
CF ln

p+ν

Nµ
, (27)

and the counterterm δK the same as that in (15). There-
fore, in the large x region φ involves two scales, the large
xp+ ∼ p+ from the hard function G in (13) and the small
(1 − x)p+ ∼ p+/N from the soft function K.

Similarly, (16)–(19) hold but with 1/b replaced by p+

/N . To sum ln(1/N), we regard the derivative p+dφ/dp+

as

p+ dφ

dp+ =
p+

N

∂φ

∂(p+/N)
, (28)

which leads to the threshold resummation,

φ(N, p+) = ∆t(N, p+)φ(0) (29)

with the exponential

∆t(N, p+) = exp

[
−2
∫ p+

p+/N

dp

p

∫ p+

p

dµ

µ
γK(αs(µ))

]
.(30)

In the intermediate x region the above two-scale case re-
duces to a one-scale case because of xp+ ∼ (1−x)p+, and
the source of double logarithms becomes less important.
Without the Mellin transformation, the addition of (10)–
(12), with the soft approximation in (2) inserted, leads to
the DGLAP equation [9],

p+ d
dp+ φ(x, p+) =

∫ 1

x

dξ

ξ
P (x/ξ, p+)φ(ξ, p+), (31)

with the kernel

P (z, p+) =
αs(p+)

π
CF

2
(1 − z)+

, (32)

where the variable change ξ = x + l+/p+ has been em-
ployed. The argument of αs has been chosen as the single
scale xp+ ∼ (1−x)p+, which is of order p+. Note that the
kernel P differs from the splitting function [5]

Pqq =
αs

π
CF

1 + z2

(1 − z)+
(33)

by the term (z2 − 1)/(1− z)+, which is finite in the z → 1
limit. The reason is that the real gluon emission is evalu-
ated in the soft approximation on deriving P , while it is
calculated exactly on deriving Pqq. Except Pqq, the other
splitting functions Pqg, Pgq and Pgg can also be evaluated
in our formalism. Pgg will be computed in the next section.
For Pqg, the subdiagram containing the special vertex at
the outer end of a quark line should be factorized in such a
way that two gluons attach to it from below. For Pgq, the
subdiagram containing the special vertex at the outer end
of a gluon line is factorized in such a way that two quarks
attach to it from below. Apparently, these subdiagrams
start with O(α2

s ). For example, the g → qq̄ cross section,
responsible for Pqg, is of O(αs) and the additional gluon
emerging from the special vertex gives another αs. Equa-
tion (32) indicates that we have reproduced only the most
singular term 2/(1−z)+ of Pqq for the reason given in the
previous paragraph. Since the leading-order Pqg and Pgq
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do not possess such a singular term [5], the subdiagrams
do not contribute to these splitting functions at O(αs).

Another remark is in order. The BFKL equation is ap-
propriate for the multi-Regge region, where the transverse
momenta carried by the rung gluons of a ladder diagram
are of the same order, i.e., lT ≈ kT. Hence, the loop mo-
mentum lT flowing through the gluon distribution func-
tion is not negligible. Since the gluon distribution func-
tion, rising fast at small x, is dominated by its behavior
at ξ ∼ x, we have the soft approximation in (1). While
the DGLAP equation is appropriate for the transverse
momentum ordered region, in which we have lT � pT,
the soft approximation in (2) holds. The kT dependence
of the distribution function then decouples, and can be
integrated out. This is the reason that a distribution func-
tion in the DGLAP equation does not need to involve the
transverse degrees of freedom of a parton.

5 Unified logarithmic summations

In this section we study the case in which both the l+ and
lT dependences of φ in (11) are retained. It will be shown
that a unified resummation for large x and a unified evo-
lution equation for intermediate and small x are derived.
Obviously, we should apply both the Fourier and Mellin
transformations to (11), and obtain

φ̄s(N, b, p+)
= K(p+/(Nµ), 1/(bµ), αs(µ))φ(N, b, p+), (34)

with the soft function

K = ig2CF µε

∫ 1

0
dz

∫
d4−εl

(2π)4−ε
Nνβ(l)

v̂βvν

v · l

[
δ(1 − z)

l2

+2πiδ(l2)δ
(

1 − z − l+

p+

)
zN−1eilT·b

]
− δK,

=
αs(µ)

π
CF

[
ln

1
bµ

− K0

(
2νp+b

N

)]
, (35)

K0 being the modified Bessel function. It is easy to ex-
amine the large b and N limits of the above expression:
for p+b � N , we have K0 → 0 and the soft function K
approaches (15) for the kT resummation. For N � p+b,
we have K0 ≈ − ln(νp+b/N) and K approaches (27) for
the threshold resummation.

Equation (35) implies a characteristic scale of order

1
b

exp
[
−K0

(
p+b

N

)]
. (36)

Following similar procedures as in (16)–(21) we derive the
unified resummation,

φ(N, b, p+) = ∆u(N, b, p+)φ(0), (37)

with the exponential

∆u(N, b, p+) exp

[
−2
∫ p+

exp[−K0(p+b/N)]/b

dp

p

×
∫ p

exp[−K0(p+b)]/b

dµ

µ
γK(αs(µ))

]
, (38)

which is appropriate for arbitrary b and N . The lower
bound of p corresponds to (36), while the lower bound of
µ is motivated by the b → ∞ and b → 0 limits, at which
(38) approaches (21) and (30), respectively.

The unified resummation for a kT-dependent parton
distribution function at the threshold exhibits suppres-
sion in the large b region (p+b � N), and turns into en-
hancement in the small b region (N � p+b). That is,
(38) displays the opposite effects of the kT and threshold
resummations at different b. The behavior of the unified
resummation can be explained as follows. For an inter-
mediate x, virtual and real soft gluon corrections cancel
exactly in the small b region, since they have an almost
equal phase space. Hence, there are only single collinear
logarithms, namely, no double logarithms. In this case the
Sudakov exponential approaches unity as b < 1/p+ [12],
indicating the soft cancellation stated above. However, at
threshold (x → 1), real gluon emissions still do not have
sufficient phase space even as b → 0, and soft virtual cor-
rections are not cancelled exactly. In this case the double
logarithms ln2(1/N) persist and become dominant. The
Sudakov suppression then transits into an enhancement,
instead of unity, and does so smoothly as b decreases.

In the intermediate and small x regions, it is not nec-
essary to resum the double logarithms ln2(1/N). After
extracting the kT resummation, the remaining single-loga-
rithm summation corresponds to a unification of the
DGLAP and BFKL equations, since both the l+ and lT
dependences have been kept. We re-express the function
φ in the integrand of φ̄sr under Fourier transformation as

φ(x + l+/p+, b, p+)
= θ((1 − x)p+ − l+)φ(x, b, p+) + [φ(x + l+/p+, b, p+)

−θ((1 − x)p+ − l+)φ(x, b, p+)]. (39)

The contribution from the first term is combined with φ̄sv,
giving the soft function K for the kT resummation. The
RG solution of K + G is given by

K + G = ᾱs(xp+)
[
ln(1 − x) + ln(p+b)

]
−
∫ xp+

1/b

dµ

µ
γK(αs(µ)), (40)

where the first term on the right-hand side comes from
the extra θ function in (39). The color factor has been
replaced by Nc, since we are considering the gluon distri-
bution function. The contribution from the second term
is written as

iNcg
2
∫

d4l

(2π)4
Nνβ(l)

v̂βvν

v · l
2πiδ(l2)eilT·b (41)

×[φ(x + l+/p+, b, p+) − θ((1 − x)p+ − l+)φ(x, b, p+)],

which will generate the splitting function below.
The master equation (8) then becomes

p+ d
dp+ φ(x, b, p+)

= −2

[∫ xp+

1/b

dµ

µ
γK(αs(µ)) − ᾱs(xp+) ln(p+b)

]
(42)
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×φ(x, b, p+) + 2ᾱs(xp+)
∫ 1

x

dzPgg(z)φ(x/z, b, p+),

with the splitting function

Pgg =
[

1
(1 − z)+

+
1
z

− 2 + z(1 − z)
]

(43)

obtained from (41). The term −2 + z(1 − z), which is
finite as z → 0 and z → 1, has been added. The term
proportional to ln(1 − x) in (40) has been absorbed into
Pgg to arrive at the plus distribution 1/(1 − z)+. We first
extract the exponential ∆ from the kT resummation,

∆(x, b, Q0, p
+) = exp

(
−2
∫ xp+

xQ0

dp

p
(44)

×
[∫ p

1/b

dµ

µ
γK(αs(µ)) − ᾱs(p) ln

pb

x

])
,

where Q0 is an arbitrary low energy scale. It is easy to
justify by substitution that the gluon distribution function
is given by

φ(x, b, Q)

= ∆(x, b, Q0, Q)φ(0) + 2
∫ 1

x

dz

∫ Q

Q0

dµ

µ
ᾱs(xµ)

×∆k(x, b, µ, Q)Pgg(z)φ(x/z, b, µ), (45)

with φ(0) the initial condition of φ. Equation (45) is the
unified evolution equation, which can be regarded as a
modified version of the Ciafaloni–Catani–Fiorani–
Marchesini equation [13].

As mentioned above, the soft divergences from virtual
and real radiative corrections cancel each other order by
order. However, in the derivation of the CCFM equation
virtual gluons are summed to all orders and grouped into
the Sudakov form factor, while real gluon contributions
are evaluated only to lowest order, which leads to the split-
ting function Pgg [13]. Therefore, the soft cancellation in
the CCFM equation is not explicit. This may bring about
a difficulty in the extension of the Sudakov resummation
up to next-to-leading logarithms. In our approach the soft
cancellation is fulfilled by (39), where the first term re-
moves the soft pole in the virtual correction of the same
order, and the second term, being infrared finite, gives
the splitting function Pgg. With this clear partition of the
real gluon contribution, we have derived the Sudakov form
factor with the accuracy of next-to-leading logarithms.

6 Conclusion

In this paper we have demonstrated that all the known
single- and double-logarithm summations, including their
unifications, can be derived by the CS technique. The
main feature is the treatment of the real gluon contribu-
tions to the subdiagram containing the special vertex. The
derivations of the various logarithmic summations begin

to diverge from this step. Simply adopting soft approx-
imations appropriate in different kinematic regions, i.e.,
neglecting the l+ or lT dependence in the parton dis-
tribution function associated with the real gluon emis-
sion, the CS technique reduces to the kT resummation,
the BFKL equation, the threshold resummation, or the
DGLAP equation. If keeping both the l+ and lT depen-
dences, a unified resummation for large x and a unified
evolution equation for intermediate and small x are ob-
tained. Our conclusion has been summarized in Table 1.

We emphasize that the CS resummation technique
must be applied to a QCD process after its factoriza-
tion has been constructed. A QCD process usually in-
volves more than one particle momentum. For example,
the deep inelastic scattering (DIS) of a hadron involves the
hadron momentum p and the virtual photon momentum
q. Quark–quark scattering and annihilation amplitudes in-
volve the two initial quark momenta p1 and p2 [14]. Since
the CS technique starts with (5), which holds only in the
case with a single argument (p · n)2/n2, it cannot be ap-
plied to a QCD process directly. We must factorize a QCD
process into several subprocesses, each of which depends
only on a single momentum. For example, DIS is factor-
ized into the convolution of a hard subamplitude, which
depends only on the large momentum transfer Q2 ≡ −q2,
with a parton distribution function, which depends only
on the hadron momentum p as shown in (3). The CS tech-
nique is then applied to the parton distribution function
following the steps presented in this work. A quark–quark
scattering or annihilation amplitude can be factorized in
a similar way, in which infrared divergences are absorbed
into jet functions associated with energetic quarks. The
CS technique is then applied to these jet functions [8],
each of which depends only on a single quark momentum.
The double logarithms that were resummed in [14] then
appear as ln2(p+2

1 /µ2) = ln2(p−2
2 /µ2) = ln2[s/(2µ2)], if p1

and p2 are chosen in the plus and minus directions, re-
spectively, with s = (p1 + p2)2 being the center-of-mass
energy.

Based on the master equation (8), many extensions can
be performed. We have considered only the O(αs) subdia-
gram, which in fact corresponds to the summation of lad-
der graphs, namely, the DGLAP and BFKL equations. As
explained in Sect. 4, the neglect of the argument lT in the
distribution function associated with real gluon emissions
corresponds to strong transverse momentum ordering. In
some processes, such as quark–quark scattering mentioned
above and the polarized structure function g1, non-ladder
graphs and the contribution from the region without the
strong transverse momentum ordering are essential. For
these processes, non-ladder graphs are included simply
by evaluating the O(α2

s ) subdiagrams, which give next-to-
leading-order corrections. While the contribution from the
region without the transverse momentum ordering is taken
into account by keeping the lT dependence of the distri-
bution function, similar to the derivation of the BFKL
equation appropriate for the multi-Regge region.

The kT and threshold resummations, and the DGLAP
and BFKL equations have been widely studied and ap-
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plied to many QCD processes. The new results obtained
in this paper also have important applications. The uni-
fied resummation is appropriate for the analysis of the
di-jet production [15], in which the transverse energy of
one jet (the trigger jet) is measured, while the other jet
(the probe jet) has a large rapidity up to 3.0, which corre-
sponds to high x values. The unified evolution equation,
because of its extra Q dependence at small x, is appropri-
ate for the explanation of the HERA data of the proton
structure function F2(x, Q2) [16]. These subjects will be
discussed elsewhere.
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11. J. Kwieciński, A.D. Martin, P.J. Sutton, Phys. Rev. D 53,

6094 (1996).
12. H-n. Li, G. Sterman, Nucl. Phys. B 381, 129 (1992)
13. M. Ciafaloni, Nucl. Phys. B 296, 49 (1988); S. Catani,

F. Fiorani, G. Marchesini, Phys. Lett. B 234, 339 (1990);
Nucl. Phys. B 336, 18 (1990); G. Marchesini, Nucl. Phys.
B 445, 49 (1995)

14. R. Kirschner, L.N. Lipatov, Nucl. Phys. B 213, 122 (1983)
15. J. Huston, Report No. hep-ph/9901352
16. ZEUS Collaboration, M. Derrick et al., Z. Phys. C 72,

399 (1996); H1 Collaboration, S. Aid et al., Nucl. Phys. B
470, 3 (1996)


